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In , the Cassini spacecraft proved the existence of cryovolcanism, the icy counterpart of

volcanism on Earth, on Saturn’s moon Enceladus during its close fly-bys. In particular, water-rich

plume venting was discovered in the south polar region. Thus, Enceladus was found to be one out of

three outer solar bodies to be geologically active. This contribution is concerned with the modelling

and computation of this phenomenon. For the underlying thermoelastic description of ice at cryo-

genic temperatures, we resort to the Green-Naghdi approach. The Green-Naghdi theory includes the

classical Fourier approach, but, in addition to that, it is a lot more general as it also allows for other

types of heat propagation. The numerical implementation is carried out with the help of the finite

element method. Results show that lateral spreading of internal and surface warming away from an

active volcanic vent increases strongly with increasing contribution of the non-classical heat flux.

Agreement with available high-resolution surface temperature data based on infrared spectrometry

seems to be best if the non-classical heat flux contributes significantly to the total heat transport.

Complementary laboratory studies would be required in order to strengthen this speculative, yet

promising idea.

solar system (along with the Earth, Jupiter’s moon Io

and Neptune’s moon Triton) where volcanic eruptions

have been observed. This finding goes along with

Enceladus is one of Saturn’s inner satellites. It the spectrometric detection of a distinctive warm spot

was discovered in and orbits Saturn in an almost centered on the south pole with a temperature of

circular orbit with a semi-major axis of , km and approximately K, which is K more than expected

a period of . days. Enceladus has the shape of a from a simple radiation balance (Fig. ; Spencer

flattened ellipsoid with a mean diameter of km, ).

which makes it the sixth-largest Saturnian moon. It Cryovolcanoes are icy equivalents of the well-

consists of a rocky core and an icy mantle and surface, known terrestrial volcanoes. Their main features are

the mean surface temperature being at a cryogenic illustrated in Fig. . Instead of magma, Enceladus’

value of K. In many ways, the general properties cryovolcanoes erupt water, which has its source in

of Enceladus are very di erent from those of other pressurized sub-surface water chambers (Porco

satellites, and thus, it is a very active research topic. ). No ammonia, which would lower the melting

With an albedo of . , it has the most reflective point, was found (Buratti ), suggesting that

surface of any body in the solar system. Moreover, it the cryomagma is pure H O. Cryovolcanoes on other

shows recent geological activity, which is very un- icy moons may also erupt a mixture of water and, for

usual for such a small body. example, ammonia or methane.

Of particular interest is Enceladus’ south polar The exact source which produces the cryovol-

region. Active cryovolcanism was found there in canic water plumes is still subject to research. In the

during a fly-by of the Cassini spacecraft (Porco literature, di erent mechanisms have been proposed

), which makes Enceladus the fourth body in the to explain the plume origin. Collins and Goodman

i.e.,
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Fig. . Predicted (radiation balance) vs. observed (com-

posite infrared spectrometer CIRS onboard the

Cassini spacecraft) surface temperatures of Encela-

dus. The south polar region shows a warm spot

due to active cryovolcanism. Credit: NASA/JPL/

GSFC.

Fig. . “Cold geyser model” for cryovolcanism on

Enceladus: Pressurized sub-surface water erupts

through a volcanic pipe (vent) into the atmosphere.

Credit: NASA/JPL/SpaceScience Institute/Cassini-

Huygens.

( ) suggest that localized subsurface melting on to hyperbolic heat transfer equations that are able to

Enceladus has produced an internal south polar sea, model thermal wave propagation and to overcome the

whereas Nimmo ( ) ascribe the heat and va- paradox of infinite wave speed inherent in Fourier’s

pour production to shear heating by tidally driven theory. Among the di erent approaches which have

lateral fault motion. Another possible explanation is been suggested, the one of Green and Naghdi ( )

given by Kie er ( ), stating that due to tec- stands out by being very consistent and, most impor-

tonic processes, a clathrate reservoir might be the tant for our case, very general. They formulated a

plume’s source. In any case, the existence of the theory which comprises Fourier’s classical law, a non-

cryovolcanic eruptions is undoubted, and the details classical law leading to a hyperbolic heat transfer

on their source are not relevant for this study. equation as well as a third type of heat conduction

Most problems of heat transport in ice, as well as which combines both limits. This theory has proven

in other common materials, are accurately described to be well suited for modelling thermoelastic prob-

by the classical theory developed by Fourier. How- lems at cryogenic temperatures; see Bargmann and

ever, at cryogenic temperatures material behavior can Steinmann ( , ). Consequently, in this study

di er greatly from that at room temperature. One of we apply the Green-Naghdi thermoelastic theory to

the properties that might change is the way heat ice in order to simulate the phenomenon of cryovol-

propagates. In the course of time, considerations led canism on Enceladus. We state explicitly that this

has so far not been directly supported by laboratory

studies or field measurements on ice, so that the study

is clearly of a speculative nature and aims at explor-

ing a promising possibility.

In , Green and Naghdi published their ther-

moelastic approach which is capable of modelling a

wider range of phenomena than Fourier’s theory.

The latter is fully included in the Green-Naghdi ap-

proach however, more possibilities are admitted.

Thus, classical problems can be simulated as well as

thermoelastic phenomena at low temperatures; see

the works of Bargmann and Steinmann ( , ).

The theory of Green-Naghdi is introduced in Sect. in

order to familiarize the reader with this very general

approach. Subsequently, a space-time finite element

discretization of the resulting initial boundary value

problem is sketched in Sect. . This is followed by

setting up a simplified model for the material proper-

ties, geometry, initial and boundary values of Encel-

adus’ cryovolcanism (Sect. ). Finally, in Sect. , com-

putational results for the temperature evolution in the

ice surrounding the cryovolcano are presented and

discussed for a number of di erent scenarios.

The very general theory developed by Green and

Naghdi was only published recently, but a number of

studies devoted to its investigation have already been

released. Since in this contribution we restrict our-

selves to the so-called Green-Naghdi theory of type III

(see below), we list only some papers concerning this

type in the following. For example, Puri and Jordan

( ) examine the propagation of plane waves in a

type-III-thermoelastic continuum. Surface waves in

thermoelastic solids are studied by Kumar and Deswal

( ). They apply the theory to an academic exam-

ple of a micropolar half-space in order to build a basis

for the extension to study the role of Green-Naghdi-

type surface waves in earth quakes and other geo-

et al.
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. Finite element discretization

,

thermal problem in detail in Bargmann and Steinmann

physical applications. Bargmann and Steinmann div div : ( )

( , , ) and Bargmann ( ) investigate
where denotes the constant mass density, is the

the general numerical behavior as well as the behav-
non-negative specific heat capacity, are the non-

ior of temperature profiles of the Green-Naghdi the-
classical and classical thermal conductivities, respec-

ory.
tively, is the reference temperature, the thermal

First, we reiterate the basic ideas of the Green-
expansion coe cient, the bulk modulus, the unity

Naghdi theory in order to introduce its basic proper-
tensor, the external heat source and the mechanical

ties to the reader. The theory developed by Green
strain tensor. Furthermore, the colon operator (:) de-

and Naghdi ( ) is subdivided into three di erent
notes double contraction. The last term in Eq. ( )

types, labeled type I, II and III. The linearized theory
represents a coupling between the thermal and the

of type I is equivalent to Fourier’s law, resulting in a
mechanical problem, mechanical strains lead to

parabolic heat equation. In case of type II, no energy
temperature changes.

dissipation is involved and the resulting heat transfer
The mechanical (deformation) problem is gov-

equation is hyperbolic. Type III is the most general
erned by the balance of linear momentum. For geo-

type. It contains both type I and II as limiting cases,
metrically linear deformations, it reads

thus it is capable of modelling classical Fourier heat

div : K ( )conduction as well as undamped thermal wave propa-

gation and, in addition to that, many more phenom-
where is the mechanical displacement vector, the

ena. The heat flux of type III is an extension of those
elasticity tensor and the volume force. Note that

of type I and II. Both types II and III can overcome
Eq. ( ), like Eq. ( ), includes a coupling between the

the unnatural property of Fourier’s law of infinite
thermal and the mechanical problem, so that a fully

propagation speed and imply a finite wave propaga-
thermo-mechanically coupled problem is at hand.

tion speed instead. For modelling cryovolcanism on

Enceladus, we apply the universal type III and couple

the heat transfer equation with the balance of linear

momentum. Type III seems to be the best choice as it
In this section, we shortly describe the chosen

is the most general case and includes the other two
discretization method for the initial boundary value

types.
problem arising from the Green-Naghdi thermoelasti-

Thermoelasticity in a finite, isotropic and homo-
city described above. The solution method is based

geneous body (an elastic deformable solid) is consid-
on finite elements for the spatial as well as for the

ered. First, we summarize the basic concept briefly,
temporal problem. Bargmann and Steinmann ( ,

since we have already discussed the derivation of the
) have already shown that this discretization ap-

proach suits well for Green-Naghdi thermoelasticity
( ), see also Green and Naghdi ( ). Subse-

of type III. Those readers who are interested in a
quently, the balance of linear momentum is intro-

mathematical description, we refer to Bargmann and
duced in order to describe the thermomechanical state

Steinmann ( , ) where we explain the proce-
of body properly.

dure in detail and list all mathematical equations. In
Green and Naghdi’s theory of type III is a very

the following, only the basic steps are reiterated in
general approach based on the introduction of a scalar

order not to repeat everything.
quantity defined by

We apply a semi-discretization technique. This

means that the spatial and the temporal domain are
( )

discretized one after the other. We start with the

spatial one and use a standard Bubnov-Galerkin finitewhere denotes the position vector in the reference

element method. The so-called weak form of the equ-configuration, the time, the absolute temperature,

ation of interest is one prerequisite. Therefore, theand is the initial value of at the reference time .

heat transfer equation ( ) and the balance of momen-is called thermal displacement, and

tum ( ) are weighted by test functions and, subse-
( )

quently, all equations are integrated over the refer-

ence configuration The unknowns,holds, where the dot represents the material time

derivative.

At this point, we only state the two equations

governing Green-Naghdi thermoelasticity of type III.

For a derivation of these equations, the reader is

referred to the Appendix. The thermal problem is

governed by the heat transfer equation

cT k k T r T K
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the thermal

displacement , the temperature and the mechanical

displacement , are interpolated element-wise by the

shape functions . Moreover, the test functions are

also discretized with the shape functions according

to the Bubnov-Galerkin method. Inserting the ap-

proximations results in semi-discretized equations

meaning that the nodal values of the unknowns are

i
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. Set-up for modelling cryovolcanism

on Enceladus

f

f

proc

proc

now only time-dependent. the ice density, we employ the standard value

After the spatial discretization, we apply a finite kg m . While Buratti ( ) state that Encelad-

element method for the temporal one as well. We us’ ice is indeed pure H O, newer investigations tend

resort to a continuous Galerkin time finite element to assume the existence of very small portions of

method because it has proved to suit well for Green- other substances, see Matson ( ). However,

Naghdi type III thermoelasticity in the past, see even in the latter case, the above value for seems

Bargmann and Steinmann ( , ). The reader is reasonable. Furthermore, the acceleration due to

also referred to the book of Eriksson ( ). The gravity on Enceladus is set to . m s .

continuous Galerkin method approximates the trial The Green-Naghdi theory of type III includes the

function piecewise and continuously in time by poly- two thermal conductivities and , to which we

nomials of degree The test functions are approxi- shall refer as the non-classical and classical thermal

mated piecewise by polynomials of degree which conductivities, respectively. Green and Naghdi ( )

are discontinuous across the element boundaries. do not narrow the ratio of and . Since they

The considered time interval [ , ] ( : initial time, describe thermal conductivities (or at least something

: final time) is divided into a finite number of subin similar), they should be non-negative, , .

tervals. In analogy to the spatial finite element meth- Having another look at the heat transfer equation of

od, the weak form is a prerequisite for the discretiza- type III, Eq. ( ), we see that if , the remaining

tion process. Thus, we multiply by the temporal test equation is equivalent to the classical heat transfer

functions and integrate over the corresponding time equation resulting from Fourier’s law. Thus, the cla-

subinterval. Afterwards, the finite element approxi- ssical theory is fully incorporated in the Green-Naghdi

mations of the unknowns, the thermal displace- theory of type III. The other extreme case, ,

ment , the temperature and the mechanical dis- leads to an undamped wave equation, and that is what

placement , and those of the test functions are in- Green and Naghdi refer to as type II. One of its

serted into the system of equations. As a result, we properties is that the constitutive equations are usu-

obtain a fully discrete algebraic set of equations. ally chosen in such a way that they do not include any

We seek for the temporal weak form of the semi- energy dissipation. Such a property might be rea-

discrete equations on one time subinterval after the sonable for modelling the pure second sound phe-

other. The solution of the preceding subinterval is nomenon, but even in this special case, the debate

used as an initial condition for the current one. In whether or not energy is dissipated is still going on

each time step, the coupled system is solved mono- (Green and Naghdi , Quintanilla and Straughan

lithically. ).

Although no experimental data exist on energy

dissipation during the eruption of a cryovolcano on

Enceladus, one can certainly conclude that the model

should include energy dissipation due to the experi-

First, the material parameters for cryogenic ice on ences on Earth, and due to the fact that so far a pure

Enceladus are introduced followed by the descrip- thermal wave propagation has only been proven be-

tion of the computational domain, the initial and the low K. We therefore identify the classical thermal

boundary conditions. conductivity with the measured thermal conductiv-

ity given in Eq.( ) ,

Wm K ( )According to Powell ( ), Slack ( ) and Greve

( ), the thermal conductivity, the thermal expan-

For the non-classical thermal conductivity , we as-sion coe cient and the specific heat capacity of ice are

sume that it is proportional to ,

Wm K

( )
. . K ( )

. . Jkg K
where is a time-scale for the modelled process, and

where the temperature is taken in units of [K]. is an adjustable, dimensionless factor. It is clear

Natural ice is composed of a large number of individ- that, for small va

ual crystals, and we assume that the orientation distri-

bution is random. Thus, its macroscopic mechanical

behavior of the ice is isotropic, and the elasticity

tensor is fully determined by Young’s modulus,

GPa, and Poisson’s ratio, . . Both quantities

are assumed to be independent of temperature. For

et al.

et al.
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lues of the Fourier-type (di usive)

heat flux will be dominant, while for large values of

heat transport will be governed mainly by the non-

classical -type flux.

In order to constrain possible values for the non-

classical thermal conductivity , we employ the fol-

lowing line of argumentation. One of the benefits of

f,
f,

k+

#
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. Results and discussion
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Fig. . Set-up of the model cryovolcano. The adja-

cent ice layer is km long and m thick. The

dashed square marks the m m area next to

the volcanic vent for which the evolution of the

temperature field will be plotted in Figs. .

. Wm K . If we choose the process time-scale

the thermoelastic theory of Green and Naghdi is that

it is capable of modelling the physical low tempera-

ture phenomenon of second sound. For materials

which show this phenomenon, there exists a slower

thermal wave called “second sound” in addition to the

well-known mechanical (elastic) wave termed “first

sound”. The velocity of the thermal wave was found

to be typically about times smaller than the veloc-

ity of the elastic wave (Bargmann and Steinmann

, ). If we apply this approximation for ice, we

obtain an independent estimate for the value of ,

propagation will not be a ected by the eruption time.
( )

Here, we want to discuss the e ect of the Green-

Naghdi model, and therefore, we do not focus on

details of the temporal evolution.

For K, this yields . Wm K , while The surface temperature is computed from a

radiation balance, which takes into account the in-

as d s (see below), we obtain a factor as coming solar radiation, the black-body radiation from

large as . However, since it is not likely the ice surface and the geothermal heat flux approach-

that ice shows fully developed second-sound phenom- ing the ice surface from below. It reads

ena (otherwise it would most likely have been ob-
( )

served already), we argue that reasonable values for

must be at least several orders of magnitude smaller. where is the solar constant for Enceladus, the

albedo (reflexivity of the ice surface), the Stefan-

Boltzmann constant ( . Wm K ) and the

upward geothermal heat flux. As already mentioned

As a simplified representation of a cryovolcano in the introduction, the albedo is as high as . , which

and its environment on Enceladus, we consider a two- is the highest value of any known body in our solar

dimensional domain of km (approx. degrees of system (Buratti ). The solar constant can be

latitude) length and m thickness, with the volcanic computed from its terrestrial counterpart,

vent at the right edge. The problem is supposed to Wm , via

be symmetric around the vent, and the curvature of

the surface is neglected. We assume that the water . Wm ( )

chamber next to the volcanic pipe is km long and

over-pressurized by a factor of compared to the where and are the distances Sun-Earth ( AU) and

hydrostatic pressure of the ice. The set-up is illus- Sun-Saturn ( . AU), respectively. Note also that the

trated in Fig. . assumed thickness of the ice layer of m can be

The initial conditions at the time are a surface justified by inserting a surface temperature of K and

temperature of K (see Fig. and its discussion in the a bottom temperature of K into the radiation bal-

introduction) and a bottom temperature of K. The ance ( ) and expressing the heat flux with the classical

reference temperature required for the solution of (Fourier-type) part of Eq. ( ) as /

the heat transfer equation ( ) is set to the initial sur-

face temperature, that is, K. The simulated

eruption starts abruptly at this time and lasts until

d. During the eruption period, the temperature The dimensionless factor in Eq. ( ) still needs to

over the entire depth of the volcanic vent is set to K, be specified. Since the available data on Enceladus

and the pressure in the vent falls linearly from the do not give a hint on how to choose in the first place,

over-pressurized water chamber at the bottom to the we have decided to vary this parameter starting with

zero value at the surface. At d, the eruption is and going up to . As mentioned above, for

“switched o ”, and the computation is continued until small values of our model will be close to the classi-

d. For the process time-scale in Eq. ( ), we cal, Fourier-type heat conduction. By increasing

choose the duration of the eruption, that is, d. the model will become more and more non-classical

There are no data available on the duration of a because of the increasing impact of the -type flux.

real eruption, so that the choice of one day is arbi- However, note that the maximum value is still

trary. However, the general development of the heat eight orders of magnitude smaller than the estimate
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Fig. . Case ( ): Evolution of the temperature field (in K) in the m m area next to the

volcanic vent shown in Fig. .

(“case ”), (“case ”) and (“case ”) will

given in the discussion of Eq. ( ), so that in neither Fourier approach, no change in temperature can be

case we assume fully developed second-sound proper- seen, see Fig. . Neither the -day-lasting volcanic

ties for ice. eruption nor the cooling down period of days have

In the following, the solutions for (“case ”), any noticeable impact on the temperature distribu-

tion within the ice.

be discussed. All simulations have been carried out In case , where , hardly any changes in

with a numerical time-step of d . min. temperature can be seen during the volcanic eruption,

Figures illustrate the temperature develop- see Fig. . However, days after the end of the erup-

ment of the m m square next to the volcanic tion, it can be clearly seen that the temperature in the

pipe. The solutions are plotted at four di erent volcanic pipe is decreasing, starting at the top, at

times of the observation for each of the four cases. Enceladus’ surface.

First, the temperature is depicted right after the be- Figures and show that, with an increasing

ginning of the volcanic eruption ( at time . impact of the non-classical -type flux (cases and

min). The next plot shows the temperature distribu- ), the volcanic eruption starts to heat the interior of

tion hour and minutes after the beginning of the the ice next to the pipe, and the surface temperature

volcanic eruption at that time the volcano is still rises. Also, immediately after the end of the erup-

erupting. Immediately after the end of the eruption, tion, the ice starts to cool down, which is best visible

after day, we look at the temperature solution in the volcanic pipe next to the surface. Depending

for the third time. Fourth, the temperature is plotted on the dimensionless factor the ice temperature

days after the beginning of the eruption, that is, equilibrates slower or faster: The higher the value of

days after its end. the faster the system equilibrates. Furthermore,

In case , which is very close to the classical due to the increasing impact of the -type heat flux,

f
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Fig. . Case ( ): Evolution of the temperature field (in K) in the m m area next to the

volcanic vent shown in Fig. .

the temperature rises within the ice during the erup- heat flux contributes significantly to the heat transfer

tion. Owing to the radiation balance ( ), the tempera- in the ice. By contrast, in case , which is very close

ture change is most pronounced in the interior of the to the classical Fourier approach, the warming ex-

ice layer and smaller at the surface; however, a sur- tends to only a few meters away from the volcanic

face warming of the order of several degrees occurs in pipe during the simulation time (and is therefore in-

the vicinity of the vent during the eruption and fades visible in Fig. ). Of course, this depends on the as-

away afterwards. sumed duration of the eruption, but the time-scale [ ]

Spencer ( ) discuss the temperature on for purely di usive heat transport over a length-scale

Enceladus’ surface observed during the Cassini fly- of [ ] km is as large as [ ] [ ] / a (com-

bys in based on infrared spectrometry. High- puted for K), and it appears unlikely that a station-

resolution data reveal that the occurrence of high ary cryovolcanic eruption can be sustained over such

temperatures is spatially correlated with the geologi- a long time. Therefore, with all due caution arising

cal features termed “tiger stripes” (linear troughs), from our simplified model and the data uncertainties,

which are most likely the source of the cryomagma it seems that non-classical heat transport in ice at

delivered during the volcanic eruptions. With re- cryogenic temperatures may play a role in explaining

gard to the results of our simulations, it is particularly the observed temperature distribution in the vicinity

interesting that the data also indicate some increased of the volcanically active troughs in Enceladus’ south

thermal emission from regions adjacent to the warm polar region.

troughs (several kilometers away). This spreading of

surface warming agrees roughly with the results of

our cases and , where the non-classical, -type

et al.
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Fig. . Case ( ): Evolution of the temperature field (in K) in the m m area next to the

volcanic vent shown in Fig. .

plied ice volcano model. Finally, we present numeri-

cal results for the Green-Naghdi theory type III for

four di erent cases with increasing influence of the

Motivated by the fully consistent and very gen- non-classical heat flux. While the approach closest to

eral thermoelastic theory of Green and Naghdi ( ), the classical theory (our case ) does not allow for any

the aim of this contribution was the modelling of significant spreading of surface warming away from

cryovolcanism on Enceladus according to their ap- the active volcanic vents, the scenarios where the

proach. Since their theory of type III includes the non-classical heat flux plays a role (cases and ) show

classical thermoelastic theory as a limiting case ( ) surface warming of several degrees in the vicinity of

and allows for various non-classical models, we stick the vents. This seems to be in better agreement with

to this Green-Naghdi sub-theory. Type III allows the- temperature data based on infrared spectrometry

rmal waves to propagate without energy dissipation (Spencer ). Therefore, we tentatively and

at finite speed, another limiting case. We modeled carefully conclude that a heat transport modelled by a

cryovolcanism on Enceladus applying di erent sce- more general approach than Fourier’s be sig-

narios lying in between the two extreme cases afore- nificant in ice at the very low temperatures which

mentioned. occur on Enceladus and other icy moons in the outer

First, we reiterated the basic equations of thermoe- solar system. Of course, complementary laboratory

lasticity based on the approach of Green and Naghdi. studies would be required in order to further support

Second, we introduced a finite element method for the this idea.

discretization of the governing system of equations.

This is followed by a detailed description of the ap-

f
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Fig. . Case ( ): Evolution of the temperature field (in K) in the m m area next to the

volcanic vent shown in Fig. .

displacement . In case of geometrically linear ther-

moelasticity of type III, the specific free energy (free

energy per mass unit) and the heat flux vector

depend on the thermal displacement , the tempera-

ture the thermal displacement gradient , the

The heat transfer equation (Eq. ( )) follows from temperature gradient and the mechanical strain

the balance of entropy tensor ,

div ( )
( )

where , , and denote the specific entropy (entropy

per mass unit), the entropy flux vector, the external The relations for and , based on those concluded by

entropy source and the internal rate of entropy pro- Green and Naghdi ( ), read

duction, respectively. Bargmann and Steinmann

: : :( ) have shown that the classical thermodynamic

relation between the entropy flux vector and the
c

( )heat flux vector ,

( )

can be transferred to the non-classical case. where is the reference value of the specific entropy

As mentioned above, one of the main features of for and . The nonnegative specific heat

Green and Naghdi’s theory of type III is the introduc- capacity is equal to Moreover, the

tion of a new thermal variable, namely the thermal entropy reads

et al.
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